HOME      •      SEARCH      •      EMAIL    •     ABOUT

Family Lythraceae
Lagerstroemia speciosa (L.) Pers.
Da ye zi wei

Scientific names  Common names
Adambea glabra Lam. Agaro (Sbl.) 
Adambea hirsuta Lam. Bugarom (S. L. Bis.) 
Lagerstroemia flos-reginae Retz. Banaba (Tag.)
Lagerstroemia hirsuta (Lam.) Willd. Duguam (S. KL. Bis.) 
Lagerstroemia major Retz. Kauilan (P. Bis.)
Lagerstroemia munchausia Willd. Makablos (Pang.) 
Lagerstroemia plicifolia Stokes Mitla (Pamp.) 
Lagerstroemia reginae Roxb. Nabulong (Neg.) 
Lagerstroemia speciosa (L.) Pers. Pamalauagon (S. L. Bis.) 
Munchausia speciosa (L.) Pamarauagon (S. L. Bis.)
Murtughas hirsuta (Lam.) Kuntze Parasabukung (Sub.) 
  Tabangau (Ibn., Neg.) 
  Tauagnau (Ibn.) 
  Pride of India (Engl.)
  Queen's flower (Engl.) 
  Queen of flowers (Engl.) 
Lagerstroemia speciosa (L.) Pers. is an accepted name. The Plant List

Other vernacular names
BURMESE: Gawkng-uchyamang.
CHINESE: Bai ri hong, Da hua zi wei.
HINDU: Jarul, Arjuna, Bondaro, Challa, Ajhar, Varagogu, Moto-bhandaro.
INDONESIA: Bungur, Bungur tekuyung, Ketangi.
JAVANESE: Ketangi.
MALAYSIA: Bungor raya, Bongor biru, Tibabah.
MYANMAR: Gawkng-uchyamang.
TAMIL: Kadali.
THAILAND: Chuang-muu, Tabaek dam, Inthanin nam.
VIETNAM: B[awf]ng l[aw]ng n[uw][ows]c.

Banaba is a deciduous tropical flowering tree, 5 to 10 meters high, sometimes growing to a height of 20 meters. Bark is smooth, grey to cream-colored, and peels off in irregular flakes. Leaves are smooth, large, spatulate, oblong to elliptic-ovate, 4 to 8 centimeters in width, 12 to 25 centimeters in length, shedding its leaves the first months of the year. Flowers are 6-parted, purplish lilac or mauve-pink, rarely pink, 5 to 7.5 centimeters across, and borne in large, terminal panicles up to 40 centimeters in length. Petals are oblong-obovate or obovate, shortly clawed, and 3 to 3.5 centimeters long; the margins are undulate and hardly fimbriate. Fruit is a large nutlike capsule, obovoid or ellipsoid, and 2 to 3.5 centimeters long. Seed is pale brown, with a wing 12 to 18 millimeters long.

- In most or all islands and provinces, chiefly in secondary forests at low and medium altitudes.
- Found in the Batan Islands and northern Luzon to Palawan, Mindanao and the Sulu Archipelago.
- Cultivated in Manila for its beautiful flowers.
- Makes an excellent avenue tree.
- Also reported in India to southern China and southward through Malaya to tropical Australia.

- Phytochemical screening yielded phenolic compounds, flavonoids, and saponins.
- Rich in tannin: fruit, 14 to 17 %; leaves 13 %; bark, 10%.
- Studies have isolated: (1) corosolic acid (2) ellagitannin Lagerstroemin (3) gallotannins.
- Penta-O-galloyl-glucopyranose (PPG) – identified as the most potent of the gallotannins, with a higher glucose transport stimulatory activity than Lagerstroemin. In addition to stimulating glucose uptake in fat cells, it also has anti-adipogenic properties
- Phytochemical studies on leaves have yielded
glycosides, sugars, tannins, proteins, steroids, anthraquinone glycosides, flavonoids, saponins.
- Phytochemical screening of methanol crude extract of roots yielded alkaloids, flavonoids, saponins, tannins, and reducing sugar. (see study below) (37)

- Before shedding, the leaves are bright orange or red during which time it is thought to contain higher levels of corosolic acid.
- Old leaves and ripe fruit are considered to yield the greatest amount of an insulin-like principle. Twenty grams of old leaves or fruit, dried from one to two weeks, in the form of 100 cc of 20% decoction was found to have activity equivalent to 6 to 7.7 units of insulin.
- Mature leaves, young leaves and flowers have an activity that ranged from 4.4 to 5.4 units of insulin per 100 cc of 20% decoction, or equivalent to around 70% of the activity of the leaves or fruit.
- Study of the wood yielded no insulin-like principle; the bark and roots yielded a very small amount.
- Leaves are considered purgative, deobstructive, diuretic.
- Roots are considered astringent, stimulant, febrifuge.
- Bark considered stimulant and febrifuge.
- Studies have suggested antioxidant, antihypertensive, antidiabetic, antimicrobial, hepatoprotective properties.
- Study of metal content of leaves yielded (concentration mg/1L) cadmium BDL (below detection limit), chromium 0.425, iron 2.422, mercury BDL, magnesium 32.64, zinc 0.837, lead BDL. (see study below)   

Parts utilized
Leaves, fruits, flowers and bark.

- Decoction of leaves of all ages used for diabetes mellitus. Some physicians believe the dried fruit decoction to be better.
- Roots have been used for a variety of stomach ailments. Leaf decoction for diabetes; also use as a diuretic and purgative.
- Decoction of old leaves and dried fruit (dried from one to two weeks), 50 gms to a pint of boiling water, 4 to 6 cups daily has been used for diabetes. Old leaves and ripe fruit are preferred, believed to have greater glucose lowering effect. Young leaves and flowers have a similar effect, though only 70% that of matures leaves and fruits. The wood has no known glucose lowering effect; the bark, a very small amount. A decoction of 20 gms of old leaves or dried fruit in 100 cc of water was found to have the equivalent effect to that of 6 to 7.7 units of insulin.
- In Pahang decoction of bark has been used for the treatment of diarrhea.
- Infusion of bark used for diarrhea.
- The bark, flowers and leaves used to facilitate bowel movements.
- Decoction of fruits or roots gargled for aphthous stomatitis.
- Decoction of leaves and flowers used for fevers and as diuretic.
- Leaf decoction or infusion used for bladder and kidney inflammation, dysuria, and other urinary dysfunctions.
- Seeds considered to have narcotic properties; also employed against aphthae.

- Banaba makes a useful timber tree.

Corosolic Acid / Lagerstroemin / Gallotannins:
Studies have identified several compounds as responsible for its anti-diabetic activity. (1) corosolic acid (2) Lagerstroemin, an ellagitannin (3) gallotannins, of which PPG – penta-O-galloyl-glucopyranose–was identified as the most potent, with a higher glucose transport stimulatory activity than Lagerstroemin. In addition to stimulating glucose uptake in fat cells, it also has anti-adipogenic properties.
Inhibition of TNF-induced Activation:
Diabetes leads to cardiomyocyte hypertrophy in association with upregulation of vasoactive factors and activation of nuclear factor (NF)-kappaB and activating protein-1. Study results indicate L speciosa can inhibit DNA-binding of NF-kappaB which may explain its possible inhibition of diabetes-induced cardiomyocyte hypertrophy. (8)
• Ellagitannins / Insulin-like Glucose Uptake Stimulatory/ Inhibitory Activities / Adipocyte Differentiation-Inhibitory Activity:
Study yielded seven ellagitannins, including lagerstroemin from the leaves of L speciosa. The ellagitannins exhibited strong activities in both stimulating insulin-like glucose uptake and inhibiting adipocyte differentiation . Also, ellagic acid derivatives showed inhibitory effect on glucose transport. (5)
Glucose Transport Activators: Screening has identified lagerstroemin, flosin, and reginin A as activators of glucose transport in rat fat cells.

• Diabetes:
(1) Banaba has been extensively studied for its application in the treatment of diabetes. Early on, Its ability to lower blood sugar was attributed to corosolic acid, a triterpenoid glycoside, believed to facilitate glucose-transport into cells. (2) Studied with abutra, akapulko, makabuhay for antidiabetic activity through activation of glucose transporter activity. One of the active principles from Banaba was the tripertene, corosolic acid.
• Weight loss:
Studies in mice suggest an antiobesity effect. It is becoming a common ingredient in weight-loss supplements / products as a metabolic enhancer.
• Hypertension: It is also being studied for its use in the treatment of blood pressure, renal and immune system benefits.
Studies in mice suggest a lipid lowering effect - decreasing triglyceride and total cholesterol levels. To date, no toxicity has been identified.
Hypoglycemic Activity of Irradiated Banaba Leaves: Study showed irradiated banaba leaf extract mixed with insulin was found to have a higher hypoglycemic activity compared with mixtures of BLE and insulin. Results may suggest the potential of reducing the cost of insulin management by lessening the dependence on recombinant insulin. (3)
Xanthine oxidase inhibitors from the leaves of Lagerstroemia speciosa (L.) Pers:
Xanthine oxidase is a key enzyme involved with hyperuricemia, catalyzing the oxidation of hypoxanthine to xanthine to uric acid. The study supports the dietary use of the aqueous extracts from Banaba leaves for the prevention and treatment of hyperuricemia. (4)
Antidiabetic Activity:
Study showed a significant reduction of blood glucose levels with the soft gel formulation showing better bioavailability than a dry-powder formulation. (•) Study evaluated the effect of leaves on fasting blood glucose in alloxan-induced diabetic rabbits. Results showed significant decrease in blood glucose at doses of 400 and 800 mg/kg. The 800 mg/kg dose was comparable to metformin 62.5 mg/kg. Results suggest favorable effects in protecting alloxan induced hyperglycemia. (34)
Other studies report potential uses:
(1) antibacterial effects from seed extracts (2) significant protection of HIV-infected cells by ellagic acid constituents (3) antioxidative activity of a water extract (4) inhibition of xanthine oxidase by aqueous extract, 31 and anti-inflammatory activity in mice.
Anti-Inflammatory / Free Radical Scavenging:
Study showed antioxidant and anti-inflammatory activities from the ethyl acetate and ethanol extracts of Lagerstroemia speciosa. (9)
A hydroalcoholic extract of leaves of L. speciosa demonstrated antioxidant activity in the nitric oxide model. (10)
Hypoglycemic Activity / Mechanism of Action:
Study of a hot water extract of leaves of L. speciosa showed hypoglycemic activity on experimental diabetic rats through suppression of gluconeogenesis and stimulation of glucose oxidation using the pentose phosphate pathway. (11)
Hepatoprotective / Roots:
L. speciosa roots showed hepatoprotective activity protecting hepatocytes from CCl4-induced liver damages due to antioxidant effect on hepatocytes. (12)
• Hepatoprotective / CCl4 Toxicity / Flowers: Study of ethanol extracts of petals showed in vitro antioxidant and in vivo hepatoprotective properties against carbon tetrachloride induced liver toxicity in Swiss albino mice. The antioxidant activities of the flower extract were higher than curcumin or ascorbic acid. Results suggest L. speciosa flowers is a reservoir of antioxidant and hepatoprotective components. (41)
Pharmacognostic Evaluation of Leaves:
Study provided important information for the correct identification and herbal standardization of L. speciosa leaves. Phytochemical screening yielded alkaloids, tannins, flavonoids, triterpenoids, sterol, and saponins. Study suggests the season of collection and storage conditions may lead to fluctuations in the corosolic acid content. (13)
Antimicrobial / Quorum Sensing Modulation:
Study showed a fruit extract caused downregulation of the quorum sensing related genes and respective signaling molecules, without affecting P. aeruginosa growth. Results suggest a possible role for quorum sensing mechanisms and the potential source of QS-based antibacterial drugs. (15)
Review / Antiobesity Therapeutics and Mechanisms:
A review of natural products with anti-obesity activity included Lagerstroemia speciosa: (1) a crude aqueous extract promoting lipid metabolism; a 3% decrease in body weight, through PPARs (peroxisome-proliferator activated receptor) agonistic activity (2) Ellagitannins via inhibition of GPDH activity by 20%. (18)
Antiobesity and Antiobesity Polyherbal Formulation:
A polyherbal formulation for obesity containing G. sylvestre, G. cambogia, and Lagerstroemia speciosa was studied in normal and obese STZ-induced diabetic rats. Results showed an antidiabetic and antiobesity effect similar to that observed with glibenclamide and sibutramine. (19)
Safety of Banaba and Corosolic Acid:
The hypoglycemic effect of banaba has been attributed to corosolic acid and elligatannins. Corosolic acid also exhibited antihyperlipidemic, antioxidant, anti-inflammatory, antifungal, antiviral, antineoplastic, and osteoblastic activities. Its antidiabetic and lipid effects involve multiple mechanisms, including enhanced cellular uptake of glucose, impaired hydrolysis of starches and sucrose, plus other signal transduction factors. No adverse effects were observed in animal studies or controlled human clinical trials. (20)
Antibacterial / Phytochemicals:
A methanolic extract of leaves yielded anthraquinones, flavonoids, saponins, and tannins. The extract exhibited high antibacterial activity against Salmonella typhimurium. (21)
Ellagitanins / Activators of Glucose Transport in Fat Cells:
Bioassay fractionation of aqueous acetone extra t yielded three active ellagitannins: lagerstroemin, flosin B and reginin A. The compounds increased glucose uptake of rat adipocytes. Results suggest the insulin like action of ellagitannins or their metabolites is responsible for the hypoglycemic effect of banaba extract in vivo. (22)
Metals in Leaves:
Study confirmed the presence of essential metals i.e., magnesium, zinc, and iron in Lagerstroemia speciosa. Heavy metals like cadmium, chromium, mercury, and lead were below detectable limit. Magnesium and zinc were used in the treatment of type II diabetes. Study supports the anti-diabetic activity of the species. (23)
Study evaluated the hypoglycemic effect of aqueous extract of L. speciosa in STZ-nicotinamide induced type 2 diabetic male albino Wistar rats. Results showed significant decrease in fasting serum glucose levels, accompanied by decreased glycosylated hemoglobin and lipid profile. (24)
Effect of Extract on Hyperglycemia and Obesity:
Study showed a unique combination of a glucose uptake stimulatory activity and effective inhibition of adipocyte differentiation induced by IS-IBMX-DEX in 3T3-L1 cells suggesting use in prevention and treatment of hyperglycemia and obesity in type II diabetes. (25)
Antinociceptive / Antidiarrheal / Cytotoxic / Dried Fruits:
Study evaluated of extract of dried fruits for antinociceptive, antidiarrheal, and cytotoxic activities in animal models. Results showed significant writhing inhibition in acetic acid-induced writhing in mice, antidiarrheal activity on castor oil induced diarrhea, and prominent cytotoxic activity against brine shrimp Artemia salina. (26)
Ellagic acid & Gallic Acid / Inhibition of HIV-1 through Inhibition of HIV-1 Protease and Reverse Transcriptase Activity / Leaves and Stems:
Gallic acid and ellagic acid from extracts of leaves and stems of banaba showed novel anti-HIV activity through inhibition of reverse transcriptase and HIV-protease, suggesting promising candidates for development of topical anti-HIV1 agents. (27)
Cytoprotective Effects / Leaves:
Study evaluated the cytoprotective effects of hot water extracts from L. speciosa leaves on 3-morpholinosydnonimine (SIN-1)-induced oxidative damage in Syrian hamster pancreatic insulinoma HIT-T15 cells. Results showed a cytoprotective effect through inhibition of lipid peroxidation, a decrease in ROS levels and an increase in antioxidant enzyme activity. (28)
Acute Toxicity Study / Non-Toxic:
Study evaluated the toxicity impact of ethanol concentrates of banaba in 30 make grown-up Sprague Dawley rats. Results showed the crude ethanol extract is non-toxic and well tolerated at tested dose levels (500, 1000, 2000, and 3000 mg/kg). (
Metals Content / Leaves:
Study dealt with the detection of metals present in leaves of L. speciosa. Essential metals like sodium, potassium, iron, magnesium and zinc were found to be predominant, while heavy metals like cadmium, mercury, and lead were found below detectable limit. It has been clinically proven that essential metals like magnesium and zinc were used in the treatment of type 2 diabetes. (see constituents above) (
Inhibition of TNF-Induced Activation of NF-kappaB in Cardiomyocyte H9c2 Cells:
Diabetes leads to cardiomyocyte hypertrophy in association with an upregulation of vasoactive factors and activation of nuclear factor (NF)-kappaB and activating protein-1. Lagerstroemia speciosa completely blocked the activation of NF-kappaB by TNF in a dose- and time-dependent manner in H9c2 cells. This may explain the possible inhibition of diabetes-induced cardiomyocyte hypertrophy. (
Neuroprotective / STZ-Induced Painful Neuropathy:
Study evaluated the neuroprotective of L. speciosa on painful diabetic neuropathy. Results showed neuroprotective property with dose-dependent reduction in pain threshold tested by mechanical, cold and thermal hyperalgesia. (
• Anti-Diabetes / Gallotannins and Elligatannins: Study suggests that tannin molecules are responsible for the insulin-like glucose transport stimulatory activity of the banaba extract. Gallotannins such as PGG (penta-O-galloyl-glucopyranose) seems to be more potent and efficacious than ellagitanins such as Lagerstroemin in IR binding, IR activation and glucose transport induction. Also, corosolic acid does not possess insulin-like transport stimulatory activity; its antidiabetic activity, if confirmed, may be through a non-insulin-like indirect mechanism. (7)
• Hypoglycemic Effect / Leaves: Study of spray-dried powder and decoction of leaves significantly reduced blood (p<0.01) and urinary glucose (p<0.05) levels in alloxan induced diabetic mice. (36)
• Analgesic / Antidiarrheal / Roots: Study evaluated a methanolic crude extract of roots for possible analgesic and anti-diarrheal activity in experimental animal models. Extract showed anti-diarrheal activity in a castor oil-induced diarrhea model. Analgesic activity was evaluated using acetic acid induced writhing inhibition in Swiss albino mice. At 200 and 400 mg/kbw dose, extract produced 35.38% and 53.85% (p<0.001) of writhing inhibition. (37)
• Antiviral / Human Rhinoviruses / Ellagic Acid: Study evaluated the cytotoxic and antiviral activities of tannin ellagic acid from leaves of L. speciosa toward HeLa cells and rhinoviruses HRV-3, -3, and -4. Results suggest ellagic acid does not interact with HRV-4 particles and may directly interact with human cells in the early stage of HRV infections to protect the cells from viral destruction. Ellagic acid also strongly inhibited RNA replication of HRV-4 in HeLa cells suggesting inhibition of viral replication via targeting of cellular molecules, rather than viral molecules. (38)
• Anti-Diabetic / Leaves: Study evaluated the cytoprotective effect of L. speciosa on pancreatic ß-cells. Study showed
hot water extracts from leaves has a cytoprotective effect against SIN-1-induced oxidative stress in HIT-T15 cells through inhibition of lipid peroxidation, a decrease in ROS levels and an increase in antioxidant enzyme activity, together with an increase in insulin secretion. Results suggest a potential for LWE in the treatment of diabetes. (39)
• Diuretic Effect / Leaves: Study evaluated various extracts of leaves for diuretic activity in rat models. Extracts were administered at doses of 250 mg/kbw. The aqueous extract showed the best diuretic effect with a higher Na/K ratio followed by ethanol, EA and methanol extracts. (40)
• Essential Oil

- Wildcrafted.
- Cultivated for flowers.
- Tablets, leaf extracts, capsules, powder and tea in local commerce and the cybermarket.

© Godofredo U. Stuart Jr., M.D.

Last Update March 2017
Updated April 2016

Photos / Content © Godofredo Stuart / StuartXchange

Additional Sources and Suggested Readings
Hypoglycemic effect of extracts from Lagerstroemia speciosa L. leaves in genetically diabetic KK-AY mice
Kakuda T, Sakane I, Takihara T, Ozaki Y, Takeuchi H, Kuroyanagi M. / Biosci Biotechnol Biochem. 1996 Feb;60(2):204-8.
Antiobesity activity of extracts from Lagerstroemia speciosa L. leaves on female KK-Ay mice
Suzuki Y, Unno T, Ushitani M, Hayashi K, Kakuda T. / J Nutr Sci Vitaminol (Tokyo). 1999 Dec;45(6):791-5.
PMID: 10737232 [PubMed - indexed for MEDLINE]
Hypoglycemic Activity of Irradiated Banaba Leaves /
Custer C. Deocaris, Ranelle R. Aguinaldo, Josephine L. dela Ysla, Amelia S. Asencion and Elmer-Rico E. Mojica / Journal of Applied Sciencse Research 1(1): 95-98, 2005
Xanthine oxidase inhibitors from the leaves of Lagerstroemia speciosa (L.) Pers.
Tomonori Unno, Akio Sugimoto and Takami Kakuda / Journal of Ethnopharmacology, Volume 93, Issues 2–3, August 2004, Pages 391–395
Active Compounds from Lagerstroemia speciosa, Insulin-like Glucose Uptake-Stimulatory/Inhibitory and Adipocyte Differentiation-Inhibitory Activities in 3T3-L1 Cells / Naisheng Bai et al / J. Agric. Food Chem., 2008, 56 (24), pp 11668–11674 / DOI: 10.1021/jf802152z
Antidiabetic activity of a standardized extract (Glucosol) from Lagerstroemia speciosa leaves
in Type II diabetics a dose-dependence study
/ JUDY William V; HARI Siva P; STOGSDILL W. W; JUDY Janet S; NAGUIB Yousry M. A; PASSWATER Richard
Antidiabetes and Anti-obesity Activity of Lagerstroemia speciosa / Guy Klein et al / Evid Based Complement Alternat Med. 2007 December; 4(4): 401–407 / doi: 10.1093/ecam/nem013.

Lagerstroemia speciosa extract inhibit TNF-induced activation of nuclear factor-kappaB in rat cardiomyocyte H9c2 cells. / Ichikaw H et al / J Ethnopharmacol. 2010 Mar 2;128(1):254-256. Epub 2010 Jan 4.
Free radical scavenging and anti-inflammatory properties of Lagerstroemia speciosa (L) / T T Priya et al / Inflammopharmacology • Volume 16, Number 4 / August, 2008 / DOI 10.1007/s10787-008-7002-6
In Vitro Antioxidant Studies of Lagerstroemia speciosa Leaves / Anil P, Manish S, Garvendra RS et al / Pharmacology Journal, Vol 2, No 10, June 2010, Pp 357-360.
Hypoglycemic activity of Lagerstroemia speciosa L. extract on streptozotocin-induced diabetic rat: Underlying mechanism of action / Barun Kanti Saha, Nurull Huda Bhuiyan et al / Bangladesh J Pharmacol 2009; 4: 79-83
Pharmacognostic evaluations of Lagerstroemia speciosa leaves / Woratouch Thitikornpong, Thatree Phadungcharoen and Suchada Sukrong / Journal of Medicinal Plants Research Vol. 5(8), pp. 1330-1337, 18 April, 2011
Lagerstroemia speciosa (L.) Pers. / Chinese names / Catalogue of Life, China
Lagerstroemia speciosa fruit extract modulates quorum sensing-controlled virulence factor production and biofilm formation in Pseudomonas aeruginosa / Brahma Singh, Harikesh Bahadur Singh, Akanksha Singh, Braj Singh, Aradhana Mishra and Chandra Nautiyal / Microbiology

Lagerstroemia speciosa / Vernacular names / GLOBINMED
Structural Features and Biological Properties of Ellagitannins in Some Plant Families of the Order Myrtales / Takashi Yoshida , Yoshiaki Amakura and Morio Yoshimura / International Journal of Molecular Sciences 2010, 11(1), 79-106; doi:10.3390/ijms11010079
Possible anti-obesity therapeutics from nature – A review / Jong Won Yun / Phytochemistry 71 (2010) 1625–1641
Effect of Polyherbal Formulation in Obesity Associated Diabetes
/ Patil Monoj N et al / International Journal of Pharmacy and Pharmaceutical Sciences, Vol 2, Suppl 3, 2010, pp 180-186.
A review of the efficacy and safety of banaba (Lagerstroemia speciosa L.) and corosolic acid. / Stohs SJ, Miller H, Kaats GR. / Phytother Res. 2012 Mar;26(3):317-24. doi: 10.1002/ptr.3664. Epub 2011 Nov 17.
Phytochemical and antibacterial study of Lagerstroemia speciosa (L.) Pers. and its ethnomedicinal importance to indigenous communities of Benguet Province, Philippines / LMV Laruan et al / Indian Journal of Traditional Knowledge, Vol 12(3), July 2013, pp 379-383.
Ellagitannins from Lagerstroemia speciosa as Activators of Glucose Transport in Fat Cells / Takeo Hayashi, Haruko Maruyama, Royji Kasai, Katsuji Hattori, Shunsuke Takasuga, Osamu Hazeki, Kazuo Yamasaki, Takashi Tanaka / Planta Med 2002; 68: 173-175
Hypoglycaemic effect of Lagerstroemia speciosa in type 2 diabetic rats / L. Samananda Singh*, N. Shashikanta Singh, M. Anita Devi / J. Med. Plants Res., Vol.8(25), pp. 899-902 , July 2014 / DOI: 10.5897/JMPR2013.5250
An Extract of Lagerstroemia speciosa L. Has Insulin-Like Glucose Uptake–Stimulatory and Adipocyte Differentiation–Inhibitory Activities in 3T3-L1 Cells / Fang Liu, Jae-kyung Kim, Yunsheng Li*, Xue-qing Liu, Jing Li, and Xiaozhuo Chen / J. Nutr. September 1, 2001 vol. 131 no. 9
Pharmacologyonline 1: 604-612 (2011)
Ellagic acid & gallic acid from Lagerstroemia speciosa L. inhibit HIV-1 infection through inhibition of HIV-1 protease & reverse transcriptase activity / Nutan, Manoj Modi, Tanvi Goel, Tiyasa Das, Shweta Malik, Samiksha Suri, Ajay Kumar Singh Rawat, Sharad Kumar Srivastava, Rakesh Tuli, Swadesh Malhotra* & Satish Kumar Gupta* / Indian J Med Res 137, March 2013, pp 540-548
Protective effects of Lagerstroemia speciosa on 3-morpholinosydnonimine (SIN-1)-induced oxidative stress in HIT-T15 pancreatic β cells / Jia-Le Song Xin Zhao Qiang Wang Ting Zhang / Molecular Medicine Reports /
DOI: 10.3892/mmr.2013.1396
Queen Crape Myrtle / Common names / Flowers of India
Lagerstroemia speciosa (L.) / Synonyms / The Plant List
Acute oral toxicity Study on Malaysian traditional herb: Lagerstroemia speciosa L. (Banaba) / AK Azad, MK Rahman, NK Sunzida / Journal of Pharmacognosy and Phytochemistry 2015; 4(4): 228-232
Lagerstroemia speciosa extract inhibit TNF-induced activation of NF-kappaB in rat cardiomyocyte H9c2 cells / H. Ichikawa / Journal of Ethnopharmacology, 2010, 128 (1): 254-6
Evaluation of hypoglycemic effect of Lagerstroemia speciosa (Banaba) leaf extract in alloxan induced diabetic rabbits / Shareef SM, Sridhar I, Mishra SS, Venkata Rao Y. / IJMRHS. 2013; 2(2): 217-222
Neuroprotective Effects of Lagerstroemia speciosa L. Extract (Banaba Leaf Extract) in Streptozotocine Induced Painful Diabetic Neuropathy in Laboratory Rats. / Kiran H. Bhokare and Aman B. Upaganlawar / Pharmacologia, 7: 9-15 (2016) / DOI: 10.5567/pharmacologia.2016.9.15
Hypoglycemic effect of Lagerstroemia speciosa (L.) Pers. on alloxan-induced diabetic mice / N. C. Tanquilut, M. R. C. Tanquilut, M. A. C. Estacio, E. B. Torres, J. C. Rosario and B. A. S. Reyes* / Journal of Medicinal Plants Research Vol. 3(12), pp. 1066-1071, December, 2009
Analgesic and Anti-diarrhoeal Activities of Lagerstroemia speciosa Roots in Experimental Animal Model / Fahad Hussain, Amlan Ganguly, Mohammad Salim Hossain and S.M. Abdur Rahman
Antiviral activity and possible mode of action of ellagic acid identified in Lagerstroemia speciosa leaves toward human rhinoviruses / Sang Wook Park, Min Jung Kwon, Ji Young Yoo, Hwa-Jung Choi and Young-Joon Ahn / BMC Complementary and Alternative Medicine (ISCMR) 201414:171 / DOI: 10.1186/1472-6882-14-171
Protective effects of Lagerstroemia speciosa on 3-morpholinosydnonimine (SIN-1)-induced oxidative stress in HIT-T15 pancreatic β cells / Jia-Le Song Xin Zhao Qiang Wang Ting Zhang / Molecular Medicine Reports / DOI: 10.3892/mmr.2013.1396
Studies on Diuretic Effect of Lagerstroemia Speciosa Linn. Leaf Extracts in Normal Rats / Priya TThambi*, Sabu M Chacko, and Jolly I Chungath / Research Journal of Pharmaceutical, Biological and Chemical Sciences
Radical Scavenging Activities of Lagerstroemia speciosa (L.) Pers. Petal Extracts and its hepato-protection in CCl4-intoxicated mice / Bipransh Kumar Tiwary, Somit Dutta Priyankar Dey, Mossaraf Hossain, Anoop Kumar, Sony Bihani, Ashis Kumar Nanda, Tapas Kumar Chaudhuri / BMC Complementary and Alternative Medicine, December 2017, 17:55

It is not uncommon for links on studies/sources to change. Copying and pasting the information on the search window or using the DOI (if available) will often redirect to the new link page.

HOME      •      SEARCH      •      EMAIL